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Numerically Efficient Use of Frequency Domain
MoM Codes For Wideband Radiation and

Scattering Problems - An Application:
Scattering From a Microstrip Patch

1. INTRODUCTION

With the present interest in electromagnetic pulses the question arises whether existing
frequency-domain computer codes can be used to provide the temporal response of antennas and
scatterers.

These codes, which usually are based on the Method of Moments (MoM), are highly accurate
and also represent a large investment in both financial resources and development time. Of
course, since time and frequency domain solutions are related by the Fourier transform, these
codes in principle could be used to numerically evaluate the spectrum of the impulse response

and, after multiplication with the signal spectrum. an inverse Fourier transform would lead to the
desired time domain response. However, the impedance or scattering behavior of many objects is
not a smooth function of frequency, especially at frequencies near resonances of the structure,
and to capture these rapid variations requires a very dense numerical sampling of the spectrum.
This represents a large, and sometimes prohibitively large, computational effort.

Thus, there is a need for a more efficient approach than a straightforward numerical Fourier
transform.

The approach proposed here is based on the observation that the late time impulse response
of many 3-dimensional structures is often well represented by a set of damped sinusoids I11 that
appear as singularities (poles) in the complex frequency plane. This suggests modeling the
response by a small set of such complex natural resonances and associated natural modes, rather

than by a purely numerical spectrum evaluation. The approach can be viewed as "smart"
interpolation since the physically motivated interpolation functions contribute additional
information. The method has also been called modei-based parameter estimation 121, a term
borrowed from signal estimation theory.

Received for publication 25 October 1993.
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The erall approach involves the following three general steps. First, an appropriate number
of complex natural resonances for the frequency range of interest and the corresponding natural
modes are determined. This is done with the aid of a frequency domain moment method (MoM)
code assumed available for the structure under consideration. Second, the induced currents on

the structure are expanded In terms of the natural resonances and modes with unknown

amplitudes. This is the so-called singularity expansion method (SEM) current estimate. The
determination of the mode amplitudes is typically the most difficult step of the overall process I 11.

131. ('This is where people usually give up', to quote Dr D Girl. an old master of the art of the
SEMI. Presently, a new approach is introduced to determine the amplitudes that uses least-
squares matching of the current estimate to known or 'trusted reference' currents at several

frequencies. The reference currents are produced with the existing MoM code. Finally, the
electromagnetic characteristics of interest such as the input impedance or radar cross section

(RCS) are calculated from the SEM current estimate. This can be done rapidly over a wide
frequency range, due to the simple form of the current estimate.

One of the advantages of our method includes the possibility of using existing frequency

domain MoM codes with only slight modifications to calculate the wide band frequency response
with reduced computation time. A compact analytic approximation for the spectrum is obtained,

from which a direct time domain (pulse) solution of a radiation or scattering problem is easily
derived. Since it is assumed that the moment method model of the object has already been
developed and tested, little additional coding work is required.

As an example of the application of the hybrid SEM/MoM technique presented here, the radar
cross section of a microstrip patch is calculated over the 1-18 GHz band. The numerical
evaluation of the radar cross section of microstrip patches in the frequency domain has been
studied by several authors 141-(51. The agreement between measured and calculated results that
these authors have attained has been very good. Nevertheless, the computational effort required
in some cases has been quite large. Therefore, several methods have been developed to help
reduce the computational burden. These methods have often involved sparse frequency sampling
or "smart" interpolation schemes based on additional physical insight or mathematical
characteristics. Interpolation of the moment method matrix 141 is one of the earlier methods that
was applied with success. In this case, the time required to fill the moment method matrix

dominated the calculation so the matrix was filled at only widely spaced frequencies. The
moment method matrix was then interpolated at intermediate frequencies and the resulting
matrix equation solved for the current at these intermediate frequencies. This interpolation
approach is not successful in all cases, however. The addition of a probe attachment basis
function causes the method to fail [51. In addition, matrix interpolation schemes do not help MoM
techniqucs that have relatively short matrix fill times and longer matrix solution times 161-171. In

these situations, a result of the matrix equation such as the induced current density rather than
the matrix equation itself must be interpolated. However, due to the highly resonant nature of
these quantities, this interpolation is exceedingly difficult.
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The sections that follow outline the basic formulation, discuss the computational
implementation and present computed radar cross section results for a rectangular air loaded
microstrip patch over a 18:1 frequency range.

2. FORMBULATION OF THE APPROACH

The details of the general approach are outlined in this section.

The currents on a three-dimensional structure such as the microstrip patch shown in Figure
1 can be expanded in terms of its natural resonances (am and natural modes Jm('). The natural
resonances and corresponding modes are solutions to the homogeneous problem and thus are

independent of any incident fields or forcing function. The natural resonances occur as pairs in
quadrants I and II of the complex frequency plane and are symmetrically placed about the
imaginary axis, (when a frequency plane is chosen such that the real frequency axis corresponds
to continuous undamped waves). The poles lie in the upper half-plane so the impulse response
decays with time.

The Singularity Expansion Method (SEM) current approximation of the true spectrum J (r',w)
of the impulse response in terms of the natural resonances and modes takes the form

J(r',co) = JSEM (rco)

where Tim are the mode amplitudes or coupling coefficients. The amplitudes Tim are determined by

the excitation. For the scattering problem, for example, the amplitudes determine how strongly a
plane wave incident from a given direction excites the m-th natural mode. The natural
resonances, the corresponding natural modes, and the mode amplitudes for a particular

excitation are, in general, unknown and must be determined to complete the current
approximation JSEM (r,W).

In theory, the scries in Eq. (11 contains an infinite number of natural modes, M - o- and

there is also a possible contribution from an er÷ire function. However, in practice a small
number of modes often suffices.

Note the convenient separation of the frequency and incident angle dependencies in Eq. (1).

This facilitates computing the time domain response of the structure since once the currents are
written in this form the multiplication with the spectrum of the desired signal and the inverse
Fourier transform to obtain the time response become trivially simple.

The natural frequencies and modes are obtained from the MoM matrix equation that normally
takes the form

M(r',r, w) J(r',cw) = V(r, o) (2)

3



x

Figure 1. Geometry of Air Loaded Microstrip Patch and Incident Plane Wave.
Patch dimensions: a = 36.6 mm, b = 26.0 mm
Patch height above ground plane: h = 1.58 mm
Plane wave incident angle: 0 = 60*, (P 450.
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where J(r',w) is the current density vector, M(r.r',cw) is the moment method impedance matrix and

the vector V(r,w) is related to the particular forcing function that may be, for example. an incident

plane wave or voltage gap generator.

The natural resonances or are defined by the matrix M(rr',o) in that they satisfy

det [M(r'. r., om )] = 0 (3)

which is a necessary condition for a source-free solution. The corresponding natural modes
Jm~r') are obtained as the solutions of the matrix equation

M(r', r, or )Jm (r') = 0 (4)

The evaluation of the unknown amplitudes, the Tlm of Eq. (1), is usually the major difficulty,
since they essentially involve evaluating the residue of M- 1 V at (o = Win. However, in the present

case the available moment method code allows a much simpler, alternate approach. Using this

code to generate a CW reference current Jcw (wn) on the patch at a particular real frequency wn,

the amplitudes can be determined by the condition that the current estimate JSEM (Wn) of Eq. (1)
provides a least mean square match to Jcw (%on), that is, the error

En(TI ""l1M) = •JSEM oWn ) - Jcw (on ) 2 (5)

is minimized. In principle all the amplitudes {ilm} can be determined by matching at one single
frequency. However, a more uniform matching over the band of interest obtained by minimizing a

combined error from several frequencies

C =I cn(T,.... TiM), (6)
n

usually leads to a better result.

Once the currents on the structure are known, the input impedance or radar cross section

may easily be calculated.

3. EXAMPLE: THE RADAR CROSS SECTION OF A MICROSTRIP PATCH

In this section the computational issues involved in applying the singularity expansion

method to the study of scattering from a microstrip patch will be discussed, since they have a

strong influence on the overall success or failure of the method. In addition, important features

of the method and its implementation will be further outlined.

5



The natural resonances were first determined by modifying an existing moment method
computer code 161-171 to accept complex frequencies. This moment method code is a so-called
"-full-wave" code that can accurately describe higher-order hybrid current distributions on the
patch. The method is based or, a mixed potential integral equation and expands the patch
currents in a series of "roof-top" shaped basis functions. Typically 130 basis functions are
required to accurately model the patch currents at the fourth or fifth resonant frequency. While
the matrix fill time is relatively short, the MoM matrix is fairly large and the solution time of the
matrix equation grows roughly as N3 as more basis functions are added to model finer patch
details or to study the antenna at higher frequencies.

The natural resonances were determined from Eq. (3), which implies that an eigenvalue of the
impedance matrix goes to zero or, equivalently, the condition number goes to infinity. Here the
complex frequency plane was searched for maxima of the condition number of the moment
method impedance matrix. The Muller method 181 was used for this search while LINPACK 191
routines were used to estimate the condition number. The real resonant frequencies determined
by the cavity model were used as starting locations for the Muller method search since the
efficiency of this method depends heavily on the quality of the initial starting locations. The
cavity model resonances {TMpqO) for a rectangular microstrip antenna are given approximately in
GHz by

fa.6150 2 ()]1/2f---- 0.96 • lt)+(7)

r~i a) b

where a and b are the dimensions of the patch in millimeters, Er is the relative permittivity of the

substrate, and the factor 0.96 accounts for the difference between a closed cavity and the actual

microstrip, which has a fringing field.

The patch shown in Figure 1 was subdivided into a large number of cells (13 by 1I cells

leading to a total of 262 rooftop basis functions: 132 x-directed, 130 y-directed) in the moment

method code to yield accurate results at the higher frequencies. The search for each complex

resonant frequency required approximately 12 evaluations of the moment method matrix

condition number. Therefore. finding the first seven natural resonances to cover the 1-12 GHz

band required approximately 84 evaluations of the MoM matrix condition number.

The natural modes corresponding to each of the natural resonances were found by use of a

matrix deflation technique. At a complex resonance the natural mode is a non-trivial solution to

the homogeneous matrix equation (4). To determine this mode one arbitrary mode component is

set to a non-zero value, which leads to a reduced set of N- I inhomogenous equations that can be

solved. This determines the natural mode apart from its magnitude. which can be set by

normalization. The numerical condition number of the reduced matrix was typically 50 times
better than the original "numerically singular" matrix. The computation of each of the natural

modes, therefore, requires roughly one evaluation of the MoM matrix equation. (This method can

fall if the reduced matrix equation is also numerically singular.)
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A second method for determining the natural modes is to compute the eigenvector associated

with the minimum elgenvalue of the matrix at a natural resonance. This method produces

equally good results but is significantly less efficient computationally.

The same moment method code was then used to calculate the reference current distributions

at several real frequencies. The error between the reference moment method currents and the

current approximation (Eq. (1)) was minimized to determine the mode amplitudes.

Finally, for the microstrip patch scattering problem considered here. the radar cross section

in the polar direction (0, (p) was computed using the natural mode current expansion by

= jZoko2 Ah cos0 (Fx sin Fy cos E)/FincI2 (8a)

a = jZoko2 Ah cos2 0 (Fx cos 5+ Fy sin Einc12 (8b)

where Zo is the free space wave impedance, ko is the wavenumber, A is the area of a charge cell

on the patch (that is, one-half the area covered by a roof-top basis function), h is the height above

the ground plane, and Fx and Fy are array factors for the rooftop basis functions on the patch

given by

Fx = j $rmeJkor'm cosW 9a)
m

Fy= T Jynejkfr'ncs wv (9b)
n

The currents Jxm and Jyn are the x and y directed components of the current approximation

(1), and W is the angle between the vectors to the field point r and to the source point r'. In this

derivation it is assumed that h << X so that the array factor for the patch, and its negative image

in the groundplane, is

e-jk0 hcOsO_ ejkohCOsO = -j2kohcosO

The far field for a patch with known current is then calculated following, for instance, van

Bladel I 101.

The computational effort to evaluate the mode amplitudes was negligible while the

computation of the radar cross section of the patch using the current estimates over the entire

band was, for the case chosen here, roughly equivalent to one evaluation of the MoM matrix

equation. Thus, with the present state of affairs, the computational effort required to implement

the SEM and MoM solutions was roughly equivalent at approximately 90 frequencies. SEM is

more efficient for a larger number of frequency points while MoM is better for a smaller number of

frequencies.
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Both the moment method and the singularlty expansion method can compute radar cross

section efficiently for multiple incident angles. The moment method approach must invert the

MoM matrix once, compute the multiple right-hand-sides and multiply. The present technique

requires the MoM solution for the reference current at several frequencies for each incident angle

to determine the mode amplitudes.

4. RESULTS AND DISCUSSION

The radar cross section of the air-loaded patch of Figure 1, computed by using the natural

mode current expansion, is presented in this section and compared to the direct calculation by

the moment method. While in principle the present method and the MoM code can be applied to

dielectric loaded patch antennas where the substrate of the antenna is not air, questions about

surface wave pole migration in the complex plane when studying the antenna at complex

frequencies were beyond the scope of the current work. The precise location of the surface wave

poles must be known during the calculation of the Sommerfeld integrals that are the Green's

functions of the integral equation.

Figure 2 shows the locations of the first 11 members of a family of complex natural

resonances that lie near the real frequency axis. The real resonant frequencies predicted by the

cavity model that were used as starting locations for the Muller method search and the

corresponding mode numbers are also shown. Note the surprisingly close correspondence

between the real and complex resonances. (The correspondence was established by comparing the

mode current distributions). A list of 15 poles that were found in this family is given in Table 1.

A second family of natural resonances, shown in Figure 3. lies In the complex plane far above

the first. These modes play a secondary role in the late time impulse response of the patch and

were more difficult to find since there exists no clear starting point for the search. The second

family modes were not included in the results that follow.

The convergence of the first family of poles with the number of moment method basis

functions is shown in Figure 4. The subdivision of the patch into a larger number of cells

improves the convergence of the natural modes at the higher frequencies but does not

significantly improve the final radar cross section results. The number of cells chosen here, 13 x

11. corresponds to about 9 cells per wavelength at 12 GHz and 6 per wavelength at 18 GHz.

Figure 5a shows a quiver diagram of the in-phase and quadrature-phase components of the

seventh natural mode. The complex frequency of this mode is approximately 11.20 + J0.33 GHz
and corresponds to the TM12 0 cavity mode resonant at f = 11.52 GHz. We note that the in-phase

component is roughly 8 times stronger than the quadrature component. Figure 5b similarly

shows the 15:th natural mode, which clearly is seen to corresponds to the TM5 0 0 cavity mode.

This time the in-phase component dominates by a factor of 11.

8
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Figures 6 through 7 compare the SEM and MoM radar cross section (o00) predictions for the

air loaded patch of Figure I using seven poles and natural modes. The RCS was calculated at

101 frequencies in all cases to produce a fairly smooth curve. Note that as more matching points

are added the quality of the radar cross section prediction improves. This implies that a slight

decrease in approximation accuracy at one or two frequencies is traded for a greatly Improved

average accuracy over a wider band.

Table 1. Cavity Resonances and Corresponding Complex Poles

Pole Mode Cavity Complex Pole
number indices resonance (GHz)

(p, q. 0) (GHz)

1 100 3.93 3.81 1+jO.515

2 010 5.54 5.207+j0. 1463

3 110 6.79 6.532+J0.0997

4 200 7.87 7.631 +-JO. 1658

5 210 9.62 9.343+JO.1488

6 020 11.1 0.506+J0.3794

7 120 11.75 11.200+jO.3324

300 11.80 ?

8 310 13.0 12.636+J0.2323

9 220 13.6 13.087+J0.3125

10 400 15.7 15.079+JO.3551

11 320 16.2 15.634+jO.3403

12 410 16.7 16 .049 +JO.3 14 1

13 030 16.6 16.219+j0.5028

- 130 17.1 ?

14 230 18.4 17.566+j0.4847

- 420 19.2 ?

15 500 19.7 18.561+J0.3965

A detailed picture of the quality of the current approximation obtainable with seven modes is

given in Figure 8 which compares the patch current JSEM at 10 GHz with the 'true' patch current

iMOM as computed by the MoM. The relative error was

re SEhM J• =0.24.Free = IJSEM 12

14
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Figure 6. Comparison of the RCS Calculated Using the SEM Current Model and the Exact MoM

Model for the Patch of Figure 1. The SEM current model is matched to the MoM

currents at one frequency (4 GHz / curve SEMI) and two frequencies (4, 6 GHz / curve
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Model for the Patch of Figure 1. The SEM current model is matched to the MoM

currents at four frequencies (4, 6, 8, 10 GHz / curve SEM4). Incident and scattered

fields TM to the z-axis.
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Incident and scattered fields TM (top) and TE (bottom) with respect to the z-axis.
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Although in this case we matched at one frequency only. this is also a typical value when

matching at several frequencies.

It is noteworthy that the high frequency limit of the current spectrum can be readily extended

with more poles and natural modes. The use of 15 poles and modes in the current expansion

JSEM gives excellent agreement between the corresponding radar cross section and the MoM

computation up to about 18 GHz as shown in Figure 9. The small difference observed in Figure 9

(top) between 11-12 GHz may be an effect of the missing counterpart of the (300)-cavity

resonance, which we were unable to find in the complex plane. Likewise the increasing difference

between the two curves at the high frequency end is due to an incomplete number of poles in that

vicinity, tin this example the MoM values may have somewhat reduced accuracy since at 18 GHz

only 6 basis functions per wavelength are used. However. this is less important since the present

purpose is to show only that the natural mode expansion does approximate the MoM curve well).

In the low frequency regime below the first resonance, the radar cross section of the patch
varies theoretically as k8 (24 dB per octave), as shown in Appendix A. The MoM based curve

follows this behavior. The natural mode expansion as described by Eq. (1) however, does not,

naturally have the correct low frequency behavior, in fact it does not even go to zero when the

frequency is zero. By expanding the array factor of Eq. (9) in a Taylor series about ko = 0 it can be

shown that the correct ko -dependence requires

JSEM(r', =O) = 0

C JSEM (r', w = 0)= 0  (10)
ao)

but, unfortunately, dhese additional conditions are not readily imposed on JSEM. A partial

correction Is obtained by subtracting the DC-value JSEM(r',wa=0) from the natural mode expansion

(1). This leads to a k60 -dependence but does not seem to significantly improve the overall

approximation accuracy, as shown in Figure 10.

Finally, we note that once the patch current is available the radiation pattern or bistatic radar

cross section for any desired direction Is easily computed. An example of the listatic RCS of the

patch at 16 GHz is given in Figure 11. This frequency is sufficiently high for the scattering pattern

to exhibit several lobes and these are apparently quite well reproduced by the natural mode

expansion.

5. CONCLUSION

A method that uses existing frequency domain MoM codes to obtain a wideband

characterization of three-dimensional antennas or scatterers has been developed. The codes must

be extended to complex frequencies, although, in general, this is a simple matter. The resulting
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Figure 10. Same Case as Figure 7. Except That the SEM Current Model Has Been Modified to

Include a DC Correction Term.

20



BISTATIC RCS (d~sqn)
-20

-40

*i .I

Case:TM-TM

-80
0 30 60 90 120 150 180

SCATTERING ANGLE (DEG)

BISTATIC RCS Cclsqu)

-20

-40

Case: TM-TE

0 30 60 90 120 150 180
SCATTERING ANGLE (DEG)

rigure 11. Bistatic RCS at 16 GHz Calculated Using the SEM Current Model and the Exact MoM

Model for the Patch in Figure 1. The scattering angle is measured in the plane of
incidence, with 300 being the direction of specular relection. TM-TM and TM-TE denote

co- and cross-polarized RCS. resp.
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current model is very concise and numerically efficient. For example, we used only 7 current

vectors to represent the complex spectrum shown in Figure 7. as compared to the 100 vectors

required by conventional dense sampling.

The natural frequencies and modes provide a complete analytical model from which the

complex time domain responses are readily obtained over all angles. A change in incidence angle

requires a recomputation of the mode amplitudes only, which is a minimal computational effort.

In the example considered we obtained an accurate analytic representation for the spectrum
of the patch current up to 18 GHz, which is commensurate with a spatial pulse width

Ax = c At =- c / fmax "- 1.7 cm, or about half the scatterer length (3.66 cm). Thus we are

beginning to actually resolve the scatterer spatially and are doing considerably better than a 'late

time' response, valid only after the pulse has painted over the entire object.

The method has been shown to work well for three dimensional structures, which are highly

resonant, i.e., with poles close to the real axis. It remains to be seen what the effects of a lower Q
would be.

At this point it is premature to compare the computer times of the proposed approach, based

on a natural mode expansion, with a straightforward MoM approach, using dense frequency

sampling. In our approach most of the computer time was expended in searching the complex

plane for the natural resonances for which we used standard routines from a computer library. In

contrast, the MoM codes have been highly optimized for computational efficiency. Thus the key to

the overall success of the proposed method is an efficient root finding routine and there is both

the need and the room for significant improvement in this respect.
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Appendix

The ko-dependence of the Radar Cross Section of a
Microstrip Patch at Low Frequencies

The scattering from a metallic plate over a reflecting ground plane can be analyzed in terms of
scattering from two plates in free space that are illuminated from above and below. In the upper
half-space the total fields are identical for the original and equivalent problems shown in Figure
Al.

First consider a single plane wave incident on the equivalent structure from above. For low
frequencies the current on the upper patch can be expanded as

J'=Jo +koJ' +k2 j2 +' (Ala)
0 0

and on the lower patch

J"=J" +koJ; + k2j2 +0 (Alb)

where k0 is the wavenumber. The first terms in each expansion are the same since both
patches have the same currents as k0 -ý 0.

For incidence from below, due to symmetry and the sign reversal of the incident field, the
upper patch will carry the current - J" and the lower - J. Superimposing these two cases leads
to upper and lower patch currents AJ and -AJ, respectively, where

The vector potential due to currents on the equivalent structure is

A = 4"0JS] 2 e e-Jko r dS MSio~(A3)

where the integration is over both patches SI and S2. Substituting the patch currents above,
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using the fact that the patch dimensions are small relative to the wavelength, and making the
usual far field approximations leads to

A &- e-Jkor {_j2koh cosO AJ dS. ()
4 r S

We must now determine the ko-dependence of the integral appearing in Eq. (A4).

For a single incident plane wave the patch currents are equal to first order and thus the far-
field vector potential at low frequencies becomes

A 4 e-Jkorr S Jo dS (A5)

4c r j S1

The electric far field is proportional to ko times the vector potential

E(poc koAw

Ee ko AO (A6)

and from Rayleigh scattering theory we know

Ee - k

E( ock2 (A7)

This leads to the result that the integral appearing In Eq. (A5) is proportional to ko;

J S1  dS oc {c A8}jS Jo d ko (8

Since the integrals over Jo and X; . J; are of the same order as ko. the integral in Eq. (A4) is

proportional to ko.

sJ ds -ko J'(J -Ji')dSock2 (A9)

Substituting Eq. (A9) in Eq. (A4Q and using Eq. (A6) leads to a far field for the patch over a
ground plane
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E8 ,ko4

0

E o4 ((10)

and a low frequency radar cross section proportional to k~o

a(e,(p) - ko. (A 1l)

This corresponds to a roll-off of 24 dB per octave.

eE• E E

h _ _ _-_-_

hT t
x

E)

Original Problem Equivalent Problem

Figure Al. Scattering From a Microstrip Patch Related to a Patch Pair in Free Space.
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